Abstract

One of the many problems faced by rail transportation companies is to optimize the utilization of the available stock of locomotives and cars. In this paper, we describe a decomposition method for the simultaneous assignment of locomotives and cars in the context of passenger transportation. Given a list of train legs and a fleet composed of several types of equipment, the problem is to determine a set of minimum cost equipment cycles such that every leg is covered using appropriate equipment. Linking constraints, which appear when both locomotives and cars are treated simultaneously, lead to a large integer programming formulation. We propose an exact algorithm, based on the Benders decomposition approach, that exploits the separability of the problem. Computational experiments carried on a number of real-life instances indicate that the method finds optimal solutions within short computing times. It also outperforms other approaches based on Lagrangian relaxation or Dantzig–Wolfe decomposition, as well as a simplex-based branch-and-bound method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.