Abstract
Accurate equilibrium, re, structures of thymine have been determined using two different, and to some extent complementary techniques. The composite ab initio Born–Oppenheimer, re(best ab initio), structural parameters are obtained from the all-electron CCSD(T) and MP2 geometry optimizations using Gaussian basis sets up to quadruple-zeta quality. The semi-experimental mixed estimation method, where internal coordinates are fitted concurrently to equilibrium rotational constants and geometry parameters obtained from a high level of electronic structure theory. The equilibrium rotational constants are derived from experimental effective ground-state rotational constants and rovibrational corrections based on a quantum-chemical cubic force field. Equilibrium molecular structures accurate to 0.002Å and 0.2° have been determined. This work is one of a few accurate equilibrium structure determinations for large molecules. The poor behavior of Kraitchman’s equations is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.