Abstract

Digital Breast Tomosynthesis (DBT) projections are acquired with a high level of noise, compared to Digital Mammography (DM) projections. Noise reduction in DBT projections is important because the projections are obtained with low radiation dose, elevating the noise level. In this way, noise reduction is essential to improve the quality of DBT exam. Recently, neural network based methods have been applied to denoise DBT projections, reaching remarkable results. Some papers have been published showing that these methods are able to overpass traditional methods’ results, but we could not find a paper comparing the different types of networks to denoise DBT projections. In this paper, we proposed an experiment to compare neural network based methods, with different architecture types, and traditional methods. We performed a comparison among five traditional non blind denoising methods and six neural network models. Considering both quantitative and qualitative analysis, we found that some neural network models achieve remarkable results, especially shallower models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.