Abstract

At scale, formal verification of hybrid systems is challenging, but a potential remedy is the observation that systems often come with a number of natural components with certain local responsibilities. Ideally, such a compartmentalization into more manageable components also translates to hybrid systems verification, so that safety properties about the whole system can be derived from local verification results. We propose a benchmark consisting of a sequence of three case studies, where components interact to achieve system safety. The baseline for the benchmark is the verification effort from a monolithic fashion (i.e., the entire system without splitting it into components). We describe how to split the system models used in these case studies into components with local responsibilities, and what is expected about their interaction to guarantee system safety. The benchmark can be used to assess the performance, automation, and verification features of component-based verification approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.