Abstract
Multilingual large language models (MLLMs) have demonstrated remarkable performance across a wide range of cross-lingual Natural Language Processing (NLP) tasks. The emergence of MLLMs made it possible to achieve knowledge transfer from high-resource to low-resource languages. Several MLLMs have been released for cross-lingual transfer tasks. However, no systematic evaluation comparing all models for Arabic cross-lingual Named-Entity Recognition (NER) is available. This paper presents a benchmark evaluation to empirically investigate the performance of the state-of-the-art multilingual large language models for Arabic cross-lingual NER. Furthermore, we investigated the performance of different MLLMs adaptation methods to better model the Arabic language. An error analysis of the different adaptation methods is presented. Our experimental results indicate that GigaBERT outperforms other models for Arabic cross-lingual NER, while language-adaptive pre-training (LAPT) proves to be the most effective adaptation method across all datasets. Our findings highlight the importance of incorporating language-specific knowledge to enhance the performance in distant language pairs like English and Arabic.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.