Abstract

As generative NLP can now produce content nearly indistinguishable from human writing, it is becoming difficult to identify genuine research contributions in academic writing and scientific publications. Moreover, information in machine-generated text can be factually wrong or even entirely fabricated. In this work, we introduce a novel benchmark dataset containing human-written and machine-generated scientific papers from SCIgen, GPT-2, GPT-3, ChatGPT, and Galactica, as well as papers co-created by humans and ChatGPT. We also experiment with several types of classifiers—linguistic-based and transformer-based—for detecting the authorship of scientific text. A strong focus is put on generalization capabilities and explainability to highlight the strengths and weaknesses of these detectors. Our work makes an important step towards creating more robust methods for distinguishing between human-written and machine-generated scientific papers, ultimately ensuring the integrity of scientific literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.