Abstract

Protein structure prediction is an important issue in structural bioinformatics. In this process, model quality assessment (MQA), which estimates the accuracy of the predicted structure, is also practically important. Currently, the most commonly used dataset to evaluate the performance of MQA is the critical assessment of the protein structure prediction (CASP) dataset. However, the CASP dataset does not contain enough targets with high-quality models, and thus cannot sufficiently evaluate the MQA performance in practical use. Additionally, most application studies employ homology modeling because of its reliability. However, the CASP dataset includes models generated by de novo methods, which may lead to the mis-estimation of MQA performance. In this study, we created new benchmark datasets, named a homology models dataset for model quality assessment (HMDM), that contain targets with high-quality models derived using homology modeling. We then benchmarked the performance of the MQA methods using the new datasets and compared their performance to that of the classical selection based on the sequence identity of the template proteins. The results showed that model selection by the latest MQA methods using deep learning is better than selection by template sequence identity and classical statistical potentials. Using HMDM, it is possible to verify the MQA performance for high-accuracy homology models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.