Abstract
Collaborative filtering (CF) is the most popular recommendation algorithm, which exploits the collected historic user ratings to predict unknown ratings. However, traditional recommender systems run at the central servers, and thus users have to disclose their personal rating data to other parties. This raises the privacy issue, as user ratings can be used to reveal sensitive personal information. In this paper, we propose a semi-distributed belief propagation (BP) approach to privacy-preserving item-based CF recommender systems. Firstly, we formulate the item similarity computation as a probabilistic inference problem on the factor graph, which can be efficiently solved by applying the BP algorithm. To avoid disclosing user ratings to the server or other user peers, we then introduce a semi-distributed architecture for the BP algorithm. We further propose a cascaded BP scheme to address the practical issue that only a subset of users participate in BP during one time slot. We analyze the privacy of the semi-distributed BP from a information-theoretic perspective. We also propose a method that reduces the computational complexity at the user side. Through experiments on the MovieLens dataset, we show that the proposed algorithm achieves superior accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.