Abstract

In this work, we consider two prognostic approaches for the prediction of the Remaining Useful Life (RUL) of degrading equipment. The first approach is based on Gaussian Process Regression (GPR) and provides the probability distribution of the equipment RUL; the second approach adopts a Similarity-Based Regression (SBR) method for the RUL prediction and belief function theory for modeling the uncertainty on the prediction. The performance of the two approaches is comparable and we propose a method for combining their outcomes in an ensemble. The least commitment principle is adopted to transform the RUL probability density function supplied by the GPR method into a belief density function. Then, the Dempster’s rule is used to aggregate the belief assignments provided by the GPR and the SBR approaches. The ensemble method is applied to the problem of predicting the RUL of filters used to clean the sea water entering the condenser of the boiling water reactor (BWR) in a Swedish nuclear power plant. The results by the ensemble method are shown to be more satisfactory than that provided by the individual GPR and SBR approaches from the point of view of the representation of the uncertainty in the RUL prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.