Abstract
Transgenic mouse models have proved to be powerful tools in studying various aspects of human neurological disorders, including epilepsy. The SCN1A-associated genetic epilepsies comprise a wide spectrum of seizure disorders with incomplete penetrance and clinical variability. SCN1A mutations can result in a large variety of seizure phenotype ranging from simple, self-limited fever-associated febrile seizures (FS), moderate-level genetic epilepsy with febrile seizures plus (GEFS+) to more severe Dravet Syndrome (DS). Although FS are commonly seen in children below 6-7 years of age who do not have genetic epilepsy, FS in GEFS+ patients continue to occur into adulthood. Traditionally, experimental FS have been induced in mice by exposing the animal to a stream of dry air or heating lamps, and the rate of change in body temperature is often not well controlled. Here, we describe a custom-built heating chamber, with a plexiglass front, that is fitted with a digital temperature controller and a heater-equipped electric fan, which can send heated forced air into the test arena in a temperature-controlled manner. The body temperature of a mouse placed in the chamber, monitored through a rectal probe, can be increased to 40-42 °C in a reproducible manner by increasing the temperature inside the chamber. Continual visual monitoring of the animals during the heating period demonstrates induction of heat-induced seizures in mice carrying an FS mutation at a body temperature that does not elicit behavioral seizures in wild-type litter mates. Animals can be easily removed from the chamber and placed on a cooling pad to rapidly return body temperature to normal. This method provides for a simple, rapid, and reproducible screening protocol for the occurrence of heat-induced seizures in epilepsy mouse models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.