Abstract
A conventional automotive driveline center bearing (CB) consists of a roller bearing that rests on a U-shaped support, which includes a bladder formed by an elastomer, providing damping for radial vibrations between the roller bearing and the housing. In order to improve the vibration and force handling characteristics for a driveline CB, use of magnetorheological (MR) fluids has been envisioned in place of the traditional elastomer. In this work, expressions for the forces acting on a vehicle center bearing have been derived along with a simulation of the magnetic field in a MR-CB. Experimental studies have been conducted on a MR-CB prototype. It is seen that such a system can be effectively used in vehicle center bearings to improve the vibration and force handling characteristics for the automotive drivelines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.