Abstract
We present a technical review of a beamline built to perform pump-probe experiments with a temporal resolution of < 200 attosecond. This is designed specifically to use the technique of attosecond transient absorption spectroscopy (ATAS) to resolve ultra-fast electron dynamics in atoms and molecules. A non-collinear, interferometrically stable geometry is adopted to allow us to individually control the characteristics of each of the pump and probe arms independent from each other. With the use of an auxiliary interferometer to correct for long-term drifts between the pump and probe arms we measure better than 150as resolution for our time-corrected delay despite having separated beam paths of over 4m in length. In our first experiment we have focused on the time dependence of the electronic states of an atom in a strong laser field. An extreme ultra-violet (XUV) attosecond pulse train (APT) and a precisely synchronized 30fs IR pulse are used in this work. Delay-dependent absorption modulations are observed at even multiples (2 and 4) of the IR dressing field frequency as the pump-probe delay is scanned. We investigate the dependence of the 2ω order absorption modulation amplitude from the transient absorption of laser-dressed helium as the IR dressing field ellipticity is varied, and we discuss the issues in obtaining such results. We present qualitative data indicating a clear anisotropy in the response of the atom to an IR dressing field, and discuss how we will improve this measurement in future experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.