Abstract

In this paper, an indoor localization system using light emitting diodes (LEDs) is presented. Location of an object is determined by scanning two LEDs at pre-defined angles which are modulated at different frequencies. During scanning process, for each LED, two maximum values of received signal strength (RSS) are logged and this information is used to compute the position of an object. Time division multiplexing (TDM) is used to incorporate angle information at the receiver. A bicubic spline interpolation is applied to estimate the position of an object. Simulations are executed for a typical indoor environment with dimensions of (3 × 3 × 2 m 3 ) and results are validated using experiments. The experimental results confirm that proposed beam scanning approach can be used to determine the location of an object precisely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.