Abstract

In this paper, a two-dimensional mutually coupled oscillator array is studied for the application of a beam-scanning and polarization-agile antenna array. In the design of antenna array, a two-dimensional oscillator array is implemented in x-y plane, the polarization agility is provided by one dimension (or y-direction) and the other dimension (or x-direction) is for beam scanning. By properly tuning the free-running frequencies of these oscillators, the array radiation direction can be scanned at the selected polarization states including linearly polarized, left-hand and right-hand circularly polarized states. The maximal phase difference of /spl plusmn/180/spl deg/ between coupled oscillating signals is acquired by utilizing their second-harmonic signals. This then gives well-defined phase differences among oscillators for beam scanning in addition to the required quadrature phase difference for circular polarization. The performances of polarization agility and beam scanning for a four-element antenna array are verified experimentally and shown to have the potential for adaptive antenna array applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.