Abstract

In this paper, a Bayesian variable selection method for spatial autoregressive (SAR) quantile models is proposed on the basis of spike and slab prior for regression parameters. The SAR quantile models, which are more generalized than SAR models and quantile regression models, are specified by adopting the asymmetric Laplace distribution for the error term in the classical SAR models. The proposed approach could perform simultaneously robust parametric estimation and variable selection in the context of SAR quantile models. Bayesian statistical inferences are implemented by a detailed Markov chain Monte Carlo (MCMC) procedure that combines Gibbs samplers with a probability integral transformation (PIT) algorithm. In the end, empirical numerical examples including several simulation studies and a Boston housing price data analysis are employed to demonstrate the newly developed methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.