Abstract

Bayesian forecasting models provide distributional estimates for random parameters, and relative to classical schemes, have the advantage that they can rapidly capture changes in nonstationary systems using limited historical data. Unlike deterministic optimization, stochastic programs explicitly incorporate distributions for random parameters in the model formulation, and thus have the advantage that the resulting solutions more fully hedge against future contingencies. In this paper, we exploit the strengths of Bayesian prediction and stochastic programming in a rolling-horizon approach that can be applied to solve real-world problems. We illustrate the methodology on an employee production scheduling problem with uncertain up-times of manufacturing equipment and uncertain production rates. Computational results indicate the value of our approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call