Abstract

TEX86 is an important proxy for constraining ocean temperatures in the Earth’s past. Current calibrations, however, feature structured residuals indicative of a spatially-varying relationship between TEX86 and sea-surface temperatures (SSTs). Here we develop and apply a Bayesian regression approach to the TEX86–SST calibration that explicitly allows for model parameters to smoothly vary as a function of space, and considers uncertainties in the modern SSTs as well as in the TEX86–SST relationship. The spatially-varying model leads to larger uncertainties at locations that are data-poor, while Bayesian inference naturally propagates calibration uncertainty into the uncertainty in the predictions. Applications to both Quaternary and Eocene TEX86 data demonstrate that our approach produces reasonable results, and improves upon previous methods by allowing for probabilistic assessments of past temperatures. The scientific understanding of TEX86 remains imperfect, and the model presented here allows for predictions that implicitly account for the effects of environmental factors other than SSTs that lead to a spatially non-stationary TEX86–SST relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.