Abstract

To enhance the performance of the brain-actuated robot system, a novel shared controller based on Bayesian approach is proposed for intelligently combining robot automatic control and brain-actuated control, which takes into account the uncertainty of robot perception, action and human control. Based on maximum a posteriori probability (MAP), this method establishes the probabilistic models of human and robot control commands to realize the optimal control of a brain-actuated shared control system. Application on an intelligent Bayesian shared control system based on steady-state visual evoked potential (SSVEP)-based brain machine interface (BMI) is presented for all-time continuous wheelchair navigation task. Moreover, to obtain more accurate brain control commands for shared controller and adapt the proposed system to the uncertainty of electroencephalogram (EEG), a hierarchical brain control mechanism with feedback rule is designed. Experiments have been conducted to verify the proposed system in several scenarios. Eleven subjects participated in our experiments and the results illustrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.