Abstract

The accelerated failure time mixture cure (AFTMC) model is widely used for survival data when a portion of patients can be cured. In this paper, a Bayesian semiparametric method is proposed to obtain the estimation of parameters and density distribution for both the cure probability and the survival distribution of the uncured patients in the AFTMC model. Specifically, the baseline error distribution of the uncured patients is nonparametrically modeled by a mixture of Dirichlet process. Based on the stick-breaking formulation of the Dirichlet process, the techniques of retrospective and slice sampling, an efficient and easy-to-implement Gibbs sampler is developed for the posterior calculation. The proposed approach can be easily implemented in commonly used statistical softwares, and its performance is comparable to fully parametric method via comprehensive simulation studies. Besides, the proposed approach is adopted to the analysis of a colorectal cancer clinical trial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.