Abstract
The primary objective of an oncology dose-finding trial for novel therapies, such as molecularly targeted agents and immune-oncology therapies, is to identify the optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. Pharmacokinetic (PK) information is considered an appropriate indicator for evaluating the level of drug intervention in humans from a pharmacological perspective. Several novel anticancer agents have been shown to have significant exposure-efficacy relationships, and some PK information has been considered an important predictor of efficacy. This paper proposes a Bayesian optimal interval design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients allocated to OD in various realistic settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.