Abstract
The estimation of a log-concave density on $\mathbb{R}$ is a canonical problem in the area of shape-constrained nonparametric inference. We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.