Abstract
ObjectivesTypically, models that were used for health state valuation data have been parametric. Recently, many researchers have explored the use of nonparametric Bayesian methods in this field. In this article, we report on the results from using a nonparametric model to predict a Bayesian short-form 6-dimension (SF-6D) health state valuation algorithm along with estimating the effect of the individual characteristics on health state valuations. MethodsA sample of 126 Lebanese members from the American University of Beirut valued 49 SF-6D health states using the standard gamble technique. Results from applying the nonparametric model were reported and compared with those obtained using a standard parametric model. The covariates’ effect on health state valuations was also reported. ResultsThe nonparametric Bayesian model was found to perform better than the parametric model at (1) predicting health state values within the full estimation data and in an out-of-sample validation in terms of mean predictions, root mean squared error, and the patterns of standardized residuals and (2) allowing for the covariates’ effect to vary by health state. The findings also suggest a potential age effect with some gender effect. ConclusionsThe nonparametric model is theoretically more flexible and produces better utility predictions from the SF-6D than previously used classical parametric model. In addition, the Bayesian model is more appropriate to account the covariates’ effect. Further research is encouraged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.