Abstract

The failure of complex engineering systems is easy to lead to disastrous consequences. To prevent the failure, it is necessary to model complex engineering systems using probabilistic techniques with limited data which is a major feature of complex engineering systems. It is a good choice to perform such modeling using Bayesian network because of its advantages in probabilistic modeling. However, few Bayesian network structural learning algorithms are designed for complex engineering systems with limited data. Therefore, an algorithm for learning the Bayesian network structure of them should be developed. Based on the process of self-purification of water, a complex engineering system is segmented into three components according to the degree of difficulty in solving them. And then a Bayesian network learning algorithm with three components (TC), including PC algorithm, MIK algorithm which is originated by the paper through combining Mutual Information and K2 algorithm, and the Hill-Climbing method, is developed, i.e. TC algorithm. To verify its effectiveness, TC algorithm, K2 algorithm, and Max-Min Hill-Climbing are respectively used to learn Alarm network with different sizes of samples. The results imply that TC algorithm has the best performance. Finally, TC algorithm is applied to study tank spill accidents with 220 samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.