Abstract

The paper introduces a recursive procedure to invert the multivariate Laplace transform of probability distributions. The procedure involves taking independent samples from the Laplace transform; these samples are then used to update recursively an initial starting distribution. The update is Bayesian driven. The final estimate can be written as a mixture of independent gamma distributions, making it the only methodology which guarantees to numerically recover a probability distribution with positive support. Proof of convergence is given by a fixed point argument. The estimator is fast, accurate and can be run in parallel since the target distribution is evaluated on a grid of points. The method is illustrated on several examples and compared to the bivariate Gaver–Stehfest method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.