Abstract

The Gaia mission will provide precise astrometry for an unprecedented number of white dwarfs (WDs), encoding information on stellar evolution, Type Ia supernovae progenitor scenarios, and the star formation and dynamical history of the Milky Way. With such a large data set, it is possible to infer properties of the WD population using only astrometric and photometric information. We demonstrate a framework to accomplish this using a mock data set with SDSS ugriz photometry and Gaia astrometric information. Our technique utilises a Bayesian hierarchical model for inferring properties of a WD population while also taking into account all observational errors of individual objects, as well as selection and incompleteness effects. We demonstrate that photometry alone can constrain the WD population's distributions of temperature, surface gravity and phenomenological type, and that astrometric information significantly improves determination of the WD surface gravity distribution. We also discuss the possibility of identifying unresolved binary WDs using only photometric and astrometric information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.