Abstract

The population outcrossing rate (t) and adult inbreeding coefficient (F) are key parameters in mating system evolution. The magnitude of inbreeding depression as expressed in the field can be estimated given t and F via the method of Ritland (1990). For a given total sample size, the optimal design for the joint estimation of t and F requires sampling large numbers of families (100-400) with fewer offspring (1-4) per family. Unfortunately, the standard inference procedure (MLTR) yields significantly biased estimates for t and F when family sizes are small and maternal genotypes are unknown (a common occurrence when sampling natural populations). Here, we present a Bayesian method implemented in the program BORICE (Bayesian Outcrossing Rate and Inbreeding Coefficient Estimation) that effectively estimates t and F when family sizes are small and maternal genotype information is lacking. BORICE should enable wider use of the Ritland approach for field-based estimates of inbreeding depression. As proof of concept, we estimate t and F in a natural population of Mimulus guttatus. In addition, we describe how individual maternal inbreeding histories inferred by BORICE may prove useful in studies of inbreeding and its consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.