Abstract
CDC and health departments investigate foodborne disease outbreaks to identify a source. To generate and test hypotheses about vehicles, investigators typically compare exposure prevalence among case-patients with the general population using a one-sample binomial test. We propose a Bayesian alternative that also accounts for uncertainty in the estimate of exposure prevalence in the reference population. We compared exposure prevalence in a 2020 outbreak of Escherichia coli O157:H7 illnesses linked to leafy greens with 2018-2019 FoodNet Population Survey estimates. We ran prospective simulations using our Bayesian approach at three time points during the investigation. The posterior probability that leafy green consumption prevalence was higher than the general population prevalence increased as additional case-patients were interviewed. Probabilities were >0.70 for multiple leafy green items 2 weeks before the exact binomial p-value was statistically significant. A Bayesian approach to assessing exposure prevalence among cases could be superior to the one-sample binomial test typically used during foodborne outbreak investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.