Abstract
This article develops a sequential Bayesian learning method to estimate the parameters and recover the state variables for generalized autoregressive conditional heteroscedasticity (GARCH) models, which are commonly used in the financial time-series analysis. This simulation-based method combines particle-filtering technology with a Markov chain Monte Carlo algorithm when the model is non-linear and the number of observed variables is relatively sparse. We compare the performance of the sequential Bayesian learning approach with the numerical maximum likelihood estimation (NMLE) in estimating models based on S&P 500 return rates. Our research concludes that the sequential parameter learning approach performs more robustly and accurately than the NMLE, by taking into account the uncertainty of the model. We also carry out simulation studies to confirm that the sequential Bayesian learning method is extremely reliable for GARCH models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.