Abstract

A Bayesian model of learning to learn by sampling from multiple tasks is presented. The multiple tasks are themselves generated by sampling from a distribution over an environment of related tasks. Such an environment is shown to be naturally modelled within a Bayesian context by the concept of an objective prior distribution. It is argued that for many common machine learning problems, although in general we do not know the true (objective) prior for the problem, we do have some idea of a set of possible priors to which the true prior belongs. It is shown that under these circumstances a learner can use Bayesian inference to learn the true prior by learning sufficiently many tasks from the environment. In addition, bounds are given on the amount of information required to learn a task when it is simultaneously learnt with several other tasks. The bounds show that if the learner has little knowledge of the true prior, but the dimensionality of the true prior is small, then sampling multiple tasks is highly advantageous. The theory is applied to the problem of learning a common feature set or equivalently a low-dimensional-representation (LDR) for an environment of related tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.