Abstract
We present a fully Bayesian hierarchical approach for multichannel speech enhancement with time-varying audio channel. Our probabilistic approach relies on a Gaussian prior for the speech signal and a Gamma hyperprior for the speech precision, combined with a multichannel linear-Gaussian state-space model for the acoustic channel. Furthermore, we assume a Wishart prior for the noise precision matrix. We derive a variational expectation-maximization VEM algorithm that uses a variant of a multichannel Wiener filter MCWF to infer the sound source and a Kalman smoother to infer the acoustic channel. It is further shown that the VEM speech estimator can be recasted as a multichannel minimum variance distortionless response MVDR beamformer followed by a single-channel variational postfilter. The proposed algorithm was evaluated using both simulated and real room environments with several noise types and reverberation levels. Both static and dynamic scenarios are considered. In terms of speech quality, it is shown that a significant improvement is obtained with respect to the noisy signal, and that the proposed method outperforms a baseline algorithm. In terms of channel alignment and tracking ability, a superior channel estimate is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.