Abstract
Applications of functional magnetic resonance imaging (fMRI) have provided novel insights into the neuropathophysiology of major psychiatric, neurological, and substance abuse disorders and their treatments. Modern activation studies often compare localized task-induced changes in brain activity between experimental groups. Complementary approaches consider the ensemble of voxels constituting an anatomically defined region of interest (ROI) or summary statistics, such as means or quantiles, of the ROI. In this work, we present a Bayesian extension of voxel-level analyses that offers several notable benefits. Among these, it combines whole-brain voxel-by-voxel modeling and ROI analyses within a unified framework. Secondly, an unstructured variance/covariance matrix for regional mean parameters allows for the study of inter-regional (long-range) correlations, and the model employs an exchangeable correlation structure to capture intra-regional (short-range) correlations. Estimation is performed using Markov Chain Monte Carlo (MCMC) techniques implemented via Gibbs sampling. We apply our Bayesian hierarchical model to two novel fMRI data sets: one considering inhibitory control in cocaine-dependent men and the second considering verbal memory in subjects at high risk for Alzheimer’s disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.