Abstract

A Bayesian framework for optimal experimental design in structural dynamics is presented. The optimal design is based on an expected utility function that measures the value of the information arising from alternative experimental designs and takes into account the uncertainties in model parameters and model prediction error. The evaluation of the expected utility function requires a large number of structural model simulations. Asymptotic techniques are used to simplify the expected utility functions under small model prediction error uncertainties, providing insight into the optimal design and drastically reducing the computation effort involved in the evaluation of the multi-dimensional integrals that arise. The framework is demonstrated using the design of sensors for modal identification and is applied to the design of a small number of reference sensors for experiments involving multiple sensor configuration setups accomplished with reference and moving sensors. In contrast to previous formulations, the Bayesian optimal experimental design overcomes the problem of the ill-conditioned Fisher information matrix for small number of reference sensors by exploiting the information in the prior distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.