Abstract
ABSTRACTThe driving risk during the initial period after licensure for novice teenage drivers is typically the highest but decreases rapidly right after. The change-point of driving risk is a critical parameter for evaluating teenage driving risk, which also varies substantially among drivers. This paper presents latent class recurrent-event change-point models for detecting the change-points. The proposed model is applied to the Naturalist Teenage Driving Study, which continuously recorded the driving data of 42 novice teenage drivers for 18 months using advanced in-vehicle instrumentation. We propose a hierarchical BFMM to estimate the change-points by clusters of drivers with similar risk profiles. The model is based on a non-homogeneous Poisson process with piecewise-constant intensity functions. Latent variables which identify the membership of the subjects are used to detect potential clusters among subjects. Application to the Naturalistic Teenage Driving Study identifies three distinct clusters with change-points at 52.30, 108.99 and 150.20 hours of driving after first licensure, respectively. The overall intensity rate and the pattern of change also differ substantially among clusters. The results of this research provide more insight in teenagers' driving behaviour and will be critical to improve young drivers' safety education and parent management programs, as well as provide crucial reference for the GDL regulations to encourage safer driving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.