Abstract
ABSTRACT Evidences for late-time acceleration of the universe are provided by multiple probes, such as Type Ia supernovae, the cosmic microwave background (CMB), and large-scale structure (LSS). In this work, we focus on the integrated Sachs–Wolfe (ISW) effect, i.e., secondary CMB fluctuations generated by evolving gravitational potentials due to the transition between, e.g., the matter and dark energy (DE) dominated phases. Therefore, assuming a flat universe, DE properties can be inferred from ISW detections. We present a Bayesian approach to compute the CMB–LSS cross-correlation signal. The method is based on the estimate of the likelihood for measuring a combined set consisting of a CMB temperature and galaxy contrast maps, provided that we have some information on the statistical properties of the fluctuations affecting these maps. The likelihood is estimated by a sampling algorithm, therefore avoiding the computationally demanding techniques of direct evaluation in either pixel or harmonic space. As local tracers of the matter distribution at large scales, we used the Two Micron All Sky Survey galaxy catalog and, for the CMB temperature fluctuations, the ninth-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP9). The results show a dominance of cosmic variance over the weak recovered signal, due mainly to the shallowness of the catalog used, with systematics associated with the sampling algorithm playing a secondary role as sources of uncertainty. When combined with other complementary probes, the method presented in this paper is expected to be a useful tool to late-time acceleration studies in cosmology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.