Abstract
Existing methods for question answering over knowledge bases (KBQA) ignore the consideration of the model prediction uncertainties. We argue that estimating such uncertainties is crucial for the reliability and interpretability of KBQA systems. Therefore, we propose a novel end-to-end KBQA model based on Bayesian Neural Network (BNN) to estimate uncertainties arose from both model and data. To our best knowledge, we are the first to consider the uncertainty estimation problem for the KBQA task using BNN. The proposed end-to-end model integrates entity detection and relation prediction into a unified framework, and employs BNN to model entity and relation under the given question semantics, transforming network weights into distributions. Therefore, predictive distributions can be estimated by sampling weights and forward inputs through the network multiple times. Uncertainties can be further quantified by calculating the variances of predictive distributions. The experimental results demonstrate the effectiveness of uncertainties in both the misclassification detection task and cause of error detection task. Furthermore, the proposed model also achieves comparable performance compared to the existing state-of-the-art approaches on SimpleQuestions dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.