Abstract

This paper introduces a new, unsupervised method for sorting and tracking the action potentials of individual neurons in multiunit extracellular recordings. Presuming the data are divided into short, sequential recording intervals, the core of our strategy relies upon an extension of a traditional mixture model approach that incorporates clustering results from the preceding interval in a Bayesian manner, while still allowing for signal nonstationarity and changing numbers of recorded neurons. As a natural byproduct of the sorting method, current and prior signal clusters can be matched over time in order to track persisting neurons. We also develop techniques to use prior data to appropriately seed the clustering algorithm and select the model class. We present results in a principal components space; however, the algorithm may be applied in any feature space where the distribution of a neuron's spikes may be modeled as Gaussian. Applications of this signal classification method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results than traditional methods based on expectation-maximization optimization of mixture models. This consistent tracking ability is crucial for intended applications of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.