Abstract
In this article we use Bayesian classification and finite mixture models to extract information from the MSI database (maintained by the Federal Reserve Bank of St. Louis) and construct a new set of non-nested monetary aggregates (under the Divisia aggregation procedure) based on statistical similarities and multidimensional structures. We also use recent advances in the fields of applied econometrics, dynamical systems theory, and statistical physics to investigate the relationship between the new money measures and economic activity. The empirical results offer practical evidence in favor of this approach to monetary aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.