Abstract

In most software reliability models which utilize the nonhomogeneous Poisson process (NHPP), the intensity function for the counting process is usually assumed to be continuous and monotone. However, on account of various practical reasons, there may exist some change points in the intensity function and thus the assumption of continuous and monotone intensity function may be unrealistic in many real situations. In this article, the Bayesian change-point approach using beta-mixtures for modeling the intensity function with possible change points is proposed. The hidden Markov model with non constant transition probabilities is applied to the beta-mixture for detecting the change points of the parameters. The estimation and interpretation of the model is illustrated using the Naval Tactical Data System (NTDS) data. The proposed change point model will be also compared with the competing models via marginal likelihood. It can be seen that the proposed model has the highest marginal likelihood and outperforms the competing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.