Abstract
ABSTRACT We develop a Bayesian model that jointly constrains receiver calibration, foregrounds, and cosmic 21 cm signal for the EDGES global 21 cm experiment. This model simultaneously describes calibration data taken in the lab along with sky-data taken with the EDGES low-band antenna. We apply our model to the same data (both sky and calibration) used to report evidence for the first star formation in 2018. We find that receiver calibration does not contribute a significant uncertainty to the inferred cosmic signal ($\lt 1{{\ \rm per\ cent}}$), though our joint model is able to more robustly estimate the cosmic signal for foreground models that are otherwise too inflexible to describe the sky data. We identify the presence of a significant systematic in the calibration data, which is largely avoided in our analysis, but must be examined more closely in future work. Our likelihood provides a foundation for future analyses in which other instrumental systematics, such as beam corrections and reflection parameters, may be added in a modular manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.