Abstract

Studies that focus on integrated modelling of household factors and the risk for malaria parasitaemia among children in sub-Saharan Africa (SSA) are scarce. By using Malaria Indicator Survey, Demographic Health Survey, AIDS Indicator Survey datasets, expert knowledge and existing literature on malaria, a Bayesian belief network (BBN) model was developed to bridge this gap. Results of sensitivity analysis indicate that drinking water sources, household wealth, nature of toilet facilities, mother's educational attainment, types of main wall, and roofing materials, were significant factors causing the largest entropy reduction in malaria parasitaemia. Cattle rearing and residence type had less influence. Model accuracy was 86.39% with an area under the receiver-operating characteristic curve of 0.82. The model's spherical payoff was 0.80 with the logarithmic and quadratic losses of 0.53 and 0.35 respectively indicating a strong predictive power. The study demonstrated how BBN modelling can be used in determining key interventions for malaria control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.