Abstract

Multitasking is common in everyday life, but its effect on activities of daily living is not well understood. Critical appraisal of performance for both healthy individuals and patients is required. Motor activities during meal preparation were monitored in healthy individuals with a wearable sensor network during single and multitask conditions. Motor performance was quantified by the median frequencies (fm) of hand trajectories and wrist accelerations. The probability that multitasking occurred based on the obtained motor information was estimated using a Naïve Bayes Model, with a specific focus on the single and triple loading conditions. The Bayesian probability estimator showed task distinction for the wrist accelerometer data at the high and low value ranges. The likelihood of encountering a certain motor performance during well-established everyday activities, such as preparing a simple meal, changed when additional (cognitive) tasks were performed. Within a healthy population, the probability of lower acceleration frequency patterns increases when people are asked to multitask. Cognitive decline due to aging or disease might yield even greater differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.