Abstract

Polychlorinated biphenyl (PCB) contamination has historically posed constraints on the recreational and commercial fishing industry in the Great Lakes. Empirical evidence suggests that PCB contamination represents a greater health risk from fish consumption than other legacy contaminants. The present study attempts a rigorous assessment of the spatio-temporal PCB trends in multiple species across the Canadian waters of the Great Lakes. We applied a Bayesian modelling framework, whereby we initially used dynamic linear models to delineate PCB levels and rates of change, while accounting for the role of fish length and lipid content as covariates. We then implemented Bayesian hierarchical modelling to evaluate the temporal PCB trends during the dreissenid pre- and post-invasion periods, as well as the variability among and within the water bodies of the Great Lakes system. Our analysis indicates that Lake Ontario is characterized by the highest PCB levels among nearly all of the fish species examined. Historically contaminated local areas, designated as Areas of Concern, and embayments receiving riverine inputs displayed higher concentrations within each of the water bodies examined. The general temporal trend across the Great Lakes was that the high PCB concentrations during the early 1970s followed a declining trajectory throughout the late 1980s/early 1990s, likely as a result of the reductions in industrial emissions and other management actions. Nonetheless, after the late 1990s/early 2000s, our analysis provided evidence of a decline in the rate at which PCB concentrations in fish were dropping, accompanied by a gradual establishment of species-specific, steady-state concentrations, around which there is considerable year-to-year variability. The overall trends indicate that reduced contaminant emissions have brought about distinct beneficial changes in fish PCB concentrations, but past historical contamination along with other external or internal stressors (e.g., invasive species, climate change) continue to modulate the current levels, thereby posing potential risks to humans through fish consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call