Abstract
In this paper, we address the problem of data description using a Bayesian framework. The goal of data description is to draw a boundary around objects of a certain class of interest to discriminate that class from the rest of the feature space. Data description is also known as one-class learning and has a wide range of applications. The proposed approach uses a Bayesian framework to precisely compute the class boundary and therefore can utilize domain information in form of prior knowledge in the framework. It can also operate in the kernel space and therefore recognize arbitrary boundary shapes. Moreover, the proposed method can utilize unlabeled data in order to improve accuracy of discrimination. We evaluate our method using various real-world datasets and compare it with other state of the art approaches of data description. Experiments show promising results and improved performance over other data description and one-class learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.