Abstract
The reconstruction of acoustical sources from discrete field measurements is a difficult inverse problem that has been approached in different ways. Classical methods (beamforming, near-field acoustical holography, inverse boundary elements, wave superposition, equivalent sources, etc.) all consist--implicitly or explicitly--in interpolating the measurements onto some spatial functions whose propagation are known and in reconstructing the source field by retropropagation. This raises the fundamental question as whether, for a given source topology and array geometry, there exists an optimal interpolation basis which minimizes the reconstruction error. This paper provides a general answer to this question, by proceeding from a Bayesian formulation that is ideally suited to combining information of physical and probabilistic natures. The main findings are the followings: (1) The optimal basis functions are the M eigen-functions of a specific continuous-discrete propagation operator, with M being the number of microphones in the array. (2) The a priori inclusion of spatial information on the source field causes super-resolution according to a phenomenon coined "Bayesian focusing." (3) The approach is naturally endowed with an internal regularization mechanism and results in a robust regularization criterion with no more than one minimum. (4) It admits classical methods as particular cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.