Abstract
We investigate different amplitude scaling relations adopted for the asteroseismology of stars that show solar-like oscillations. Amplitudes are among the most challenging asteroseismic quantities to handle because of the large uncertainties that arise in measuring the background level in the star's power spectrum. We present results computed by means of a Bayesian inference on a sample of 1640 stars observed with Kepler, spanning from main sequence to red giant stars, for 12 models used for amplitude predictions and exploiting recently well-calibrated effective temperatures from SDSS photometry. We test the candidate amplitude scaling relations by means of a Bayesian model comparison. We find the model having a separate dependence upon the mass of the stars to be largely the most favored one. The differences among models and the differences seen in their free parameters from early to late phases of stellar evolution are also highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.