Abstract

Abstract High correlation among predictors has long been an annoyance in regression analysis. The crux of the problem is that the linear regression model assumes each predictor has an independent effect on the response that can be encapsulated in the predictor's regression coefficient. When predictors are highly correlated, the data do not contain much information on the independent effects of each predictor. The high correlation among predictors can result in large standard errors for the regression coefficients and coefficients with signs opposite of what is expected based on a priori, subject-matter theory. We propose a Bayesian model that accounts for correlation among the predictors by simultaneously performing selection and clustering of the predictors. Our model combines a Dirichlet process prior and a variable selection prior for the regression coefficients. In our model highly correlated predictors can be grouped together by setting their corresponding coefficients exactly equal. Similarly, redun...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.