Abstract
This paper presents two Bayesian hierarchical models—one utilizing the life-time data and other using the structural health monitoring (SHM) data, for degradation modeling and reliability assessment of rolling element bearings. The main advantage of the proposed life-time data based model is that, it accounts for the variability in failure times caused due to the difference in material properties, initial degradation, operating and environmental conditions by introducing Bayesian hierarchy in the model parameters. On the other hand, SHM data (such as vibration and strain) based model focuses on stochastic nature of bearing degradation, and models it using a two-phase Wiener process. In this model, the point of phase-transition is the time when the damage initiates. The detection of such a point is undertaken using Bayesian change point algorithms. For both the models, the model parameters and reliability are updated as more data becomes available. In this manner, the prior domain knowledge and life-time data or SHM data collected from the field can effectively be integrated to get updated reliability. Two case studies for rolling element bearings are presented to demonstrate the applicability to life-time as well as SHM data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.