Abstract

The aim of this paper is to identify potential determinants of bitcoin returns. We consider a wide range of various determinants including economic, financial and technology-related factors as well as uncertainty and attention indices. The analysis is conducted using LASSO models estimated using both frequentist and Bayesian methods. We evaluate the ability of these estimators to forecast bitcoin returns. The results indicate that a Bayesian LASSO model that takes into account the stochastic volatility and the leverage effect provides the most accurate forecasts. Using this model we are able to identify alternative drivers of bitcoin returns and analyse the underlying mechanisms that affect bitcoin returns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.