Abstract

Instrumental variable (IV) analysis has been widely used in economics, epidemiology, and other fields to estimate the causal effects of covariates on outcomes, in the presence of unobserved confounders and/or measurement errors in covariates. However, IV methods for time-to-event outcome with censored data remain underdeveloped. This paper proposes a Bayesian approach for IV analysis with censored time-to-event outcome by using a two-stage linear model. A Markov chain Monte Carlo sampling method is developed for parameter estimation for both normal and non-normal linear models with elliptically contoured error distributions. The performance of our method is examined by simulation studies. Our method largely reduces bias and greatly improves coverage probability of the estimated causal effect, compared with the method that ignores the unobserved confounders and measurement errors. We illustrate our method on the Women's Health Initiative Observational Study and the Atherosclerosis Risk in Communities Study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.