Abstract

Accurate prediction of the remaining useful life (RUL) of plant turbines is a major scientific challenge for effective operation and maintenance in the power plant industry. This paper proposes an RUL prediction methodology that incorporates a damage index into the damage growth model. A Bayesian inference technique is used to consider uncertainties while estimating the probability distribution of a damage index from on-site hardness measurements. A Bayesian approach is proposed for the damage growth model for use with aged steam turbines. The predictive distribution of the damage index is estimated using its mean and standard deviation. As a case study, real steam turbines from power plants are examined to demonstrate the effectiveness of the proposed Bayesian approach. The results from the proposed damage growth model can be used to predict the RULs of the steam turbines of power plants regardless of load types (peak-load or base-load) of the power plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.